Department of Chemistry, University of Leuven, Celestijnenlaan 200F, B-3030 Heverlee, Belgium Received April 11, 1977

The usefulness of ¹³C nmr spectroscopy in the tautomeric assignment of 5-(monosubstituted)amino-1,2,3,4-thiatriazoles is demonstrated. The reaction products, derived therefrom by alkylation, acylation and sulfonylation, are also readily characterized by an inspection of the $^{1\,3}$ C₅ signal shift. For thiatriazolinethione, the $^{1\,3}$ C nmr spectrum indicates the presence of a thioketone function (6, δ 193.1 ppm) instead of a thiol function (7).

J. Heterocyclic Chem., 14, 1417 (1977)

The long unsolved and confusing problem of prototropic tautomerism of 1-monosubstituted tetrazoline-5thiones has recently been settled definitively by 13 C nmr analysis (1). For the isomeric 5-(monosubstituted)amino-1,2,3,4-thiatriazoles, the available spectroscopic evidences (2) favor the amino form 1 over the imino form 2, and it would be desirable to corroborate this by 13 C nmr Indeed, the C₅ atoms in 1 and 2 are spectroscopy.

expected to resonate at different places in the 13 C nmr spectra, allowing for an easy diagnosis of this tautomeric aspect. In order to locate the C₅ absorptions of 1 and 2, we have prepared the known model compounds 3a,b and 4a,b (3,4). The C_5 atom in 3a absorbed at δ 180.4

3a: R = Ph, δ 180.4 (deuteriochloroform)
 3b: R = Ts, δ 173.1 (deuteriochloroform)

- 4a: R = Ph. δ 156 (deuteriochloroform) 4b: R = Ts. δ 166.3 (deuteriochloroform)

ppm, comparable with the values found for 5-phenyl-1,2,3,4-thiatriazole (δ 178.5 ppm) (5) and S-alkylated thiatriazolinethiolates (δ 179 ppm) (1). In contrast, 4a exhibited a significant upfield chemical shift for the C5 atom at 8 156 ppm. As expected (6), the tosyl derivatives 3b and 4b resonated respectively at higher and lower field than 3a and 4a.

With these values at hand, we can conclude that all the monosubstituted aminothiatriazoles 1b-g recorded in Table 1 exist exclusively (at least in solution by nmr) in the amino form, even when a strong electron-withdrawing group is present on the exocyclic nitrogen atom (see 1e). Further confirmation comes from the ¹H nmr spectrum of 1b which showed a triplet NH absorption at δ 8.6 ppm and a methylene doublet at δ 4.6 ppm. Note also that the unsubstituted 5-aminothiatriazole 1a, whose amino form was accepted on the basis of firm ir and uv data (2), exhibited a C₅ absorption (δ 178.2 ppm) at the expected position in the ¹³C nmr spectrum.

The 13 C nmr data of model compounds 3 and 4 can also be used to elucidate the structure of any substitution product. Thus, methylation of 1f with diazomethane furnished a mixture of two products in a ration of 70:30.

Table 1 ¹³C Nmr Data of 5-Aminothiatriazoles (ppm from TMS)

Compound	R	M.p., °C	C ₅	solvent
1 a	Н	128-130	178.2	DMSO-d ₆
1b	PhCH ₂	80-81	179.4	deuteriochloroform
1 c	t-C ₄ H ₉	113-114	176	deuteriochloroform, DMSO-d ₆ , perdeuterioacetone
1d	C_6H_5	142-143	174.2	DMSO-d ₆
1e	Ts	142-144	173.1	DMSO-d ₆
1f	Aco H OAC H	126-127 dec.	177.5	deuteriochloroform
1 g	CH ₂ OB ₂ H H H B ₂ O OB ₂	121-122 dec.	177.4	deuteriochloroform

They were readily identified as 3 and 4 (R = 2,3,4,6-tetra-O-acetyl- β -D-glucopyranosyl) on the basis of their 13 C nmr spectra which showed C_5 absorptions respectively at δ 181.2 and 156.4 ppm (deuteriochloroform). Treatment of 1d with p-methoxybenzoyl chloride and tosyl chloride in the presence of triethylamine furnished single products which exhibited C_5 absorptions respectively at δ 171.5 (deuteriochloroform) and 174.3 ppm (DMSO-d₆), pointing to structures 5a and 5b (7).

In contrast with 1, thiatriazolinethione exists in acetone- d_6 solution in the thione form 6, and not in the thiol form 7 as claimed by Jensen and Pedersen (2). Indeed, at 0° its $^{1.3}$ C nmr spectrum manifested a low-field

C=S absorption at δ 193.1 ppm, comparable with reference compound 8 (8) whereas the C-atom in 7 would be expected to resonate in the region δ 175-180 ppm (1).

EXPERIMENTAL

-,

The ir spectra were taken on a Perkin-Elmer 157G spectrometer. Proton nmr spectra were recorded with a Jeol MH-100 or Varian XL-100 spectrometer. For ¹³C nmr spectra, the XL-100 apparatus was equipped with a device for pulsed Fourier transform operation. The known thiatriazoles were prepared as reported (2,3,4,9).

Synthesis of 5-(2,3,5-Tri-O-benzoyl- β -D-ribofuranosylamino)thiatriazole (19).

This compound was synthesized by treatment of 2,3,5-tri-O-benzoyl- β -D-ribofuranosyl isothiocyanate (10) (2.5 g.) with an excess of hydrazoic acid in ether (120 ml.) at room temperature for one week. Compound 1g precipitated in 78% yield and was recrystallized from dichloromethane-ether to give white needles, m.p. 121-122° dec.; ir (potassium bromide): 3400-3200, 1720, 1540 cm⁻¹; ¹H nmr (deuteriochloroform): δ 8.4 (NH, exchangable with deuterium oxide), 8.0-7.8 (6H, m), 7.7-7.2 (9H, m), 5.95-5.7 (3H, m), 4.8-4.5 (3H, m); ¹³C nmr (deuteriochloroform): δ 177.4 (C=N), 166.7, 166 (C=O), 89.4 (C₁), 80.1, 74.8, 71.9, 64 (C₅).

Anal. Calcd. for $C_{27}H_{22}N_4O_7S$ (547): C, 59.33; H, 4.05. Found: C, 59.28; H, 4.16.

Methylation of $5-(2,3,4,6-\text{Tetra-}O-\text{acetyl-}\beta-\text{p-glucopyranosyl-amino})$ thiatriazole (1f).

A saturated solution of diazomethane in ether (30 ml.) was added to a suspension of **1f** (3 g.) in ether (30 ml.). After one week, the solvent was removed to give a white solid composed of the two methylated products **3** and **4** (R = 2,3,4,6-tetra-O-acetyl- β -D-glucopyranosyl) in a ratio of 70:30 (overall yield 90%). They were separated by fractional crystallization from ether and recrystallized from ether. Compound **3** (R = 2,3,4,6-tetra-O-acetyl- β -D-glucopyranosyl), m.p. 102- 104° ; ir (potassium bromide): 1750, 1540, 1230, 1040 cm⁻¹; 1 H nmr (deuteriochloroform): $^{\delta}$ 5.67 (1H, d, J = 9 Hz), 5.5-5.0 (3H, m), 4.4-4.2 (2H, m), 4.2-3.8 (1H, m), 3.18 (3H, s), 2.08, 2.02 and 2.00 (9H, three s), 1.84 (3H, s); 13 C nmr (deuteriochloroform): $^{\delta}$ 181.2 ($^{\epsilon}$ -N), 88 ($^{\epsilon}$ -N), 74.5, 72.9, 68.7, 68.1, 62 ($^{\epsilon}$ -N), 36.8 ($^{\epsilon}$ -CH₃-N).

Anal. Calcd. for $C_{16}H_{22}N_4O_9S$ (446): C, 43.07; H, 4.93. Found: C, 42.99; H, 4.94.

Compound 4 (R = 2,3,4,6-tetra-O-acetyl- β -D-glucopyranosyl), had m.p. $102\text{-}104^\circ$; ir (potassium bromide): 1760, 1650 (C=N), 1235, 1040 cm⁻¹; ¹H nmr (deuteriochloroform): δ 5.4-4.9 (3H, m), 4.64 (1H, d, J = 9 Hz), 4.25 (CH₂, m), 3.8 (1H, m), 3.73 (3H, s), 2.12 (3H, s), 2.08 and 2.00 (9H, three s); ¹³C nmr (deuteriochloroform): δ 156.4 (C=N), 88.7 (C₁), 74.1, 73.3, 72.6, 68.8, 62.2 (C₆), 34.4 (CH₃N).

Anal. Calcd. for $C_{16}\,H_{2\,2}\,N_4\,O_9\,S$ (446): C, 43.07; H, 4.93. Found: C, 42.71; H, 4.84.

Acknowledgement.

We thank G. Verhelst, G. Vermeulen, and J. Flémal for their help in preparing the compounds. We are also indebted to the IWONL (Belgium) for fellowships to A. Willocx and G. Mathys.

REFERENCES AND NOTES

- (1) G. L'abbe, S. Toppet, G. Verhelst, and C. Martens, J. Org. Chem., 39, 3770 (1974); see also A. Könnecke, E. Lippmann, and E. Kleinpeter, Z. Chem., 15, 402 (1975).
- (2) Review: K. A. Jensen and C. Pedersen, *Advan. Heterocyclic Chem.*, 3, 263 (1964); see also A. Holm, *ibid.*, 20, 145 (1976).
- (3) R. Neidlein and J. Tauber, Arch. Pharm. (Weinheim), 304, 687 (1971).
 - (4) R. Neidlein and K. Salzmann, Synthesis, 52 (1975).
- (5) A. Holm, K. Schaumburg, N. Dahlberg, C. Christophersen, and J. P. Snyder, J. Org. Chem., 40, 431 (1975).
- (6) Although it is logical that **4b** resonates at lower field than **4a**, the upfield chemical shift of **3b** with respect to **3a** cannot be rationalized, but was indeed expected by comparison with other systems; see, for instance, G. L'abbè, G. Verhelst, L. Huybrechts, and S. Toppet, *J. Heterocyclic Chem.*, **14**, 515 (1977).
- (7) G. Vermeulen, unpublished results, University of Leuven (1976).
- (8) A. F. Halasa and G. E. P. Smith, J. Org. Chem., 36, 636 (1971); see also J. Elguero, C. Marzin, A. R. Katritzky, and P. Linda, Adv. Heterocyclic Chem., Suppl. 1, 399-400 (1976).
- (9) R. Bognár, L. Somogyi, L. Szilágyi, and Z. Györgydeák, Carbohydr. Res., 5, 320 (1967).
 - (10) T. Naito and M. Sano, Chem. Pharm. Bull., 9, 709 (1961).